Browse Source

Lambda calcul implem, debugger cbv et cbn

master
julia 2 years ago
parent
commit
081b42f2fc
  1. 112
      lambda.ml

112
lambda.ml

@ -0,0 +1,112 @@
type term =
| Var of string
| Lambda of string * term
| App of term * term
let rec apply x sub = function
| Var (y) -> if y = x then sub else Var (y)
| Lambda (y,t) -> Lambda (y, apply x sub t)
| App (t1, t2) -> App (apply x sub t1, apply x sub t2)
let rec subst t sub_list =
List.fold_left (fun t (x, sub) -> apply x sub t) t sub_list
let rec beta = function
| App (Lambda (x, t), u) -> subst t [(x, u)]
| _ -> failwith "This term is not a redex"
(* ---------------------------------------
Exemples
--------------------------------------- *)
let x = Var "x";;
let y = Var "y";;
let a = Var "a" ;;
let b = Var "b" ;;
let i = Lambda ("x", x);;
(*(λx. x x) a — duplication*)
let n1 = App (Lambda ("x", App (x, x)), a);;
(*(λx. x x) (λa. a) — passage de fonction / ordre supérieur*)
let n2 = App (Lambda ("x", App (x, x)), Lambda (("a"), a));;
(*(λx. x (λx.x)) y — variable libres/liées*)
let n3 = App (Lambda ("x", App (x, Lambda ("x", x) ) ), y) ;;
(*(λx. x (λy. x y)) y — capture de variable*)
let n4 = App (Lambda ("x", App(x, Lambda ("y", App (x, y)))), y);;
(*(λxy. x) a b — fonction à deux entrées et effacement*)
let n5 = App ( App ( Lambda ("x", ( Lambda ("y", x))), a), b);;
(*(λxy. x) a — application partielle pour deux entrées*)
let n6 = App ( Lambda ("x", ( Lambda ("y", x))), a);;
(*(λxy. x) I a b — sur application pour deux entrées*)
let n7 = App (App ( App (Lambda ("x", ( Lambda ("y", x))), i), a), b);;
(*(λx. x x) (I I) — duplication inutile dans une stratégie*)
let n8 = App ( Lambda ("x", App (x, x)), App ( i, i));;
(*(λxy. y) (I I) I — différence de complexité selon la stratégie*)
let n9 = App ( App (Lambda ("x", ( Lambda ("y", y))), App (i, i)), i);;
(* ---------------------------------------
Display
--------------------------------------- *)
let rec string_of_list printer sep = function
| [] -> ""
| [x] -> printer x
| h::t ->
(printer h) ^ sep ^ (string_of_list printer sep t)
let rec string_of_term = function
| Var x -> x
| Lambda (x, Lambda (y, t)) -> "λ" ^ x ^ y ^ ". " ^ string_of_term t ^ ""
| Lambda (x, t) -> "λ" ^ x ^ ". " ^ string_of_term t ^ ""
| App (Var x, Var y) -> x ^ " " ^ y
| App (t, Var x) -> "(" ^ string_of_term t ^ ") " ^ x
| App ( App ( t, u), v) -> "(" ^ string_of_term (App (t, u)) ^ ") " ^ string_of_term v
| App ( u, App ( t, v)) -> string_of_term u ^ " (" ^ string_of_term (App (t, v)) ^ ")"
| App ( Lambda (x, App (t, y)), v) -> "(" ^ string_of_term (Lambda (x, App (t, y))) ^ ") " ^ string_of_term v
| App ( Lambda (x, t), u) -> string_of_term (Lambda (x,t)) ^ " (" ^ string_of_term u ^")"
| App (t, u) -> string_of_term t ^ " (" ^ string_of_term u ^ ")"
(* ---------------------------------------
Réduction
--------------------------------------- *)
exception Irreductible
let is_value = function
| Lambda (_, _) -> true
| Var _ -> true
| _ -> false
let rec lo_reduction = function
| App ( Lambda (x, t), u) as redex -> (beta redex)
| App (Var x, (_ as t)) -> App (Var x, lo_reduction t)
| App (App (_,_) as t, Var x) -> App (lo_reduction t, Var x)
| App (t, u) -> (App (lo_reduction t, lo_reduction u))
| Lambda (x, t) -> Lambda (x, lo_reduction t)
| _ -> raise Irreductible
let rec lo_eval t =
try let t' = lo_reduction t in
lo_eval t' with Irreductible -> t
let (*cbv*) cbv = function
| App ( Lambda (x, t), v) as redex when is_value v -> (*cbv*) (beta redex)
| App (t, u) -> (App (t, (*cbv*) u))
| Lambda (x, t) as l -> l
| Var x -> Var x
let rec cbv_loop t =
let t' = cbv t in
if t' = t then t'
else cbv_loop t'
let rec cbn = function
| App ( Lambda (x, t), v) as redex -> cbn (beta redex)
| App (t, u) -> cbn (App (cbn t, u))
| Lambda (x, t) -> Lambda (x, t)
| Var x -> Var x
Loading…
Cancel
Save