4 changed files with 7 additions and 153 deletions
@ -1,137 +0,0 @@
|
||||
(*Terme du Lambda-Calcul*) |
||||
type term = |
||||
| Var of string |
||||
| Lambda of string * term |
||||
| App of term * term |
||||
|
||||
(*Applique une substitution de x par sub à un terme t*) |
||||
let rec apply x sub = function |
||||
| Var (y) -> if y = x then sub else Var (y) |
||||
| Lambda (y,t) -> Lambda (y, apply x sub t) |
||||
| App (t1, t2) -> App (apply x sub t1, apply x sub t2) |
||||
|
||||
(*Applique une liste de substition à un terme*) |
||||
let rec subst t sub_list = |
||||
List.fold_left (fun t (x, sub) -> apply x sub t) t sub_list |
||||
|
||||
(* Applique la beta réduction, qui transforme (lambda x. t)u en t[x:=u] *) |
||||
let rec beta = function |
||||
| App (Lambda (x, t), u) -> subst t [(x, u)] |
||||
| _ -> failwith "This term is not a redex" |
||||
|
||||
(* --------------------------------------- |
||||
Exemples |
||||
--------------------------------------- *) |
||||
|
||||
let x = Var "x";; |
||||
let y = Var "y";; |
||||
let a = Var "a" ;; |
||||
let b = Var "b" ;; |
||||
let i = Lambda ("x", x);; |
||||
|
||||
(*(λx. x x) a — duplication*) |
||||
let n1 = App (Lambda ("x", App (x, x)), a);; |
||||
(*(λx. x x) (λa. a) — passage de fonction / ordre supérieur*) |
||||
let n2 = App (Lambda ("x", App (x, x)), Lambda (("a"), a));; |
||||
(*(λx. x (λx.x)) y — variable libres/liées*) |
||||
let n3 = App (Lambda ("x", App (x, Lambda ("x", x) ) ), y) ;; |
||||
(*(λx. x (λy. x y)) y — capture de variable*) |
||||
let n4 = App (Lambda ("x", App(x, Lambda ("y", App (x, y)))), y);; |
||||
(*(λxy. x) a b — fonction à deux entrées et effacement*) |
||||
let n5 = App ( App ( Lambda ("x", ( Lambda ("y", x))), a), b);; |
||||
(*(λxy. x) a — application partielle pour deux entrées*) |
||||
let n6 = App ( Lambda ("x", ( Lambda ("y", x))), a);; |
||||
(*(λxy. x) I a b — sur application pour deux entrées*) |
||||
let n7 = App (App ( App (Lambda ("x", ( Lambda ("y", x))), i), a), b);; |
||||
(*(λx. x x) (I I) — duplication inutile dans une stratégie*) |
||||
let n8 = App ( Lambda ("x", App (x, x)), App ( i, i));; |
||||
(*(λxy. y) (I I) I — différence de complexité selon la stratégie*) |
||||
let n9 = App ( App (Lambda ("x", ( Lambda ("y", y))), App (i, i)), i);; |
||||
|
||||
(* --------------------------------------- |
||||
Display |
||||
--------------------------------------- *) |
||||
|
||||
let rec string_of_list printer sep = function |
||||
| [] -> "" |
||||
| [x] -> printer x |
||||
| h::t -> |
||||
(printer h) ^ sep ^ (string_of_list printer sep t) |
||||
|
||||
|
||||
let rec string_of_term = function |
||||
| Var x -> x |
||||
| Lambda (x, Lambda (y, t)) -> "λ" ^ x ^ y ^ ". " ^ string_of_term t ^ "" |
||||
| Lambda (x, t) -> "λ" ^ x ^ ". " ^ string_of_term t ^ "" |
||||
| App (Var x, Var y) -> x ^ " " ^ y |
||||
| App (t, Var x) -> "(" ^ string_of_term t ^ ") " ^ x |
||||
| App ( App ( t, u), v) -> "(" ^ string_of_term (App (t, u)) ^ ") " ^ string_of_term v |
||||
| App ( u, App ( t, v)) -> string_of_term u ^ " (" ^ string_of_term (App (t, v)) ^ ")" |
||||
| App ( Lambda (x, App (t, y)), v) -> "(" ^ string_of_term (Lambda (x, App (t, y))) ^ ") " ^ string_of_term v |
||||
| App ( Lambda (x, t), u) -> string_of_term (Lambda (x,t)) ^ " (" ^ string_of_term u ^")" |
||||
| App (t, u) -> string_of_term t ^ " (" ^ string_of_term u ^ ")" |
||||
|
||||
|
||||
(* --------------------------------------- |
||||
Réduction |
||||
--------------------------------------- *) |
||||
|
||||
exception Irreductible |
||||
(* Vérifie si un terme est une valeur, c'est à dire qu'on ne peut plus le réduire *) |
||||
let is_value = function |
||||
| Lambda (_, _) -> true |
||||
| Var _ -> true |
||||
| _ -> false |
||||
|
||||
(* Vérifie si un lambda est linéaire, i.e. qu'il n'y a qu'une seule occurence de son paramètre *) |
||||
|
||||
let rec count_freevars x = function |
||||
| Lambda (y, t) -> count_freevars x t |
||||
| App (t, u) -> (count_freevars x t) + (count_freevars x u) |
||||
| Var y -> if x = y then 1 else 0 |
||||
|
||||
let rec is_linear = function |
||||
| Lambda (x, t) -> (count_freevars x t) = 1 && is_linear t |
||||
| App(t, u) -> is_linear t && is_linear u |
||||
| Var x -> true |
||||
|
||||
(* Réduit d'un pas les termes par l |
||||
'extérieur puis l'intérieur *) |
||||
let rec lo_reduction = function |
||||
| App ( Lambda (x, t), u) as redex -> (beta redex) |
||||
| App (Var x, (_ as t)) -> App (Var x, lo_reduction t) |
||||
| App (App (_,_) as t, Var x) -> App (lo_reduction t, Var x) |
||||
| App (App (_,_) as t, (_ as u)) -> App (lo_reduction t, u) |
||||
(*| App (t, u) -> (App (lo_reduction t, lo_reduction u))*) |
||||
| Lambda (x, t) -> Lambda (x, lo_reduction t) |
||||
| _ -> raise Irreductible |
||||
|
||||
(* Boucle sur la lo_reduction pour appliquer cette stratégie de réduction jusqu'à la fin *) |
||||
let rec lo_eval t = |
||||
try let t' = lo_reduction t in |
||||
lo_eval t' with Irreductible -> t |
||||
|
||||
(* Réduit d'un pas les termes en commençant par l'argument puis réduit les fonctions *) |
||||
let rec cbv = function |
||||
| App ( Lambda (x, t), v) as redex when is_value v -> (*cbv*) (beta redex) |
||||
| App (t, u) when is_value u -> (App (cbv t, u)) |
||||
| App (t, u) -> (App (t, cbv u)) |
||||
| Lambda (x, t) -> raise Irreductible |
||||
| Var x -> raise Irreductible |
||||
|
||||
(* Boucle sur call_by_value pour appliquer cette stratégie de réduction jusqu'à la fin *) |
||||
let rec cbv_eval t = |
||||
try let t' = cbv t in |
||||
cbv_eval t' with Irreductible -> t |
||||
|
||||
(* Réduit d'un pas les termes en commençant par la fonction puis passe à l'argument*) |
||||
let rec cbn = function |
||||
| App ( Lambda (x, t), v) as redex -> beta redex |
||||
| App (t, u) -> (App (cbn t, u)) |
||||
| Lambda (x, t) -> raise Irreductible |
||||
| Var x -> raise Irreductible |
||||
|
||||
(* Boucle sur call_by_name pour appliquer cette stratégie de réduction jusqu'à la fin *) |
||||
let rec cbn_eval t = |
||||
try let t' = cbv t in |
||||
cbn_eval t' with Irreductible -> t |
Loading…
Reference in new issue