2 changed files with 156 additions and 46 deletions
@ -0,0 +1,128 @@
|
||||
open Unification |
||||
|
||||
(* ======================================== |
||||
Definitions |
||||
======================================== *) |
||||
|
||||
type pol = Pos | Neg | Npol |
||||
type ray = Var of id | Func of (id * pol * ray list) |
||||
type star = ray list |
||||
type constellation = star list |
||||
type graph = (int * int) * (ray * ray) list |
||||
|
||||
(* List monad *) |
||||
let return x = [x] (*plongement dans la monade de liste*) |
||||
let (>>=) xs k = List.flatten (List.map k xs) |
||||
let guard c x = if c then return x else [] |
||||
|
||||
(* ======================================== |
||||
Useful functions |
||||
======================================== *) |
||||
|
||||
(* Convert a pol and an id to a string, adding + or - before the id *) |
||||
|
||||
let pol_to_string pol id = |
||||
if pol = Pos then "+" ^ id |
||||
else if pol = Neg then "-" ^ id |
||||
else id |
||||
|
||||
(* Convert a ray (which is polarized) to a term *) |
||||
|
||||
let rec ray_to_term r = |
||||
match r with |
||||
| Var id -> (Var(id) : term) |
||||
| Func(id, pol, raylist) -> (Func(pol_to_string pol id, List.map ray_to_term raylist) : term) |
||||
|
||||
(* Invert polarization of a pol*) |
||||
|
||||
let inv_pol pol = |
||||
if pol = Pos then Neg |
||||
else if pol = Neg then Pos |
||||
else pol |
||||
|
||||
(* Invert the polarization of a ray to allow an easier Unification writing *) |
||||
|
||||
let rec inv_pol_ray ray = |
||||
match ray with |
||||
| Func(id, pol, raylist) -> Func(id, inv_pol pol, List.map inv_pol_ray raylist) |
||||
| _ -> ray |
||||
|
||||
(* Checks if a ray is polarised *) |
||||
|
||||
let rec is_polarised r = |
||||
match r with |
||||
| Var id -> false |
||||
| Func(_, p, r) -> (p <> Npol) || (List.fold_left (fun acc b -> (is_polarised b) || acc) false r) |
||||
|
||||
(* Checks if two rays are dual, meaning that after inverting polarization of one ray, the two rays can be unified *) |
||||
|
||||
let dual_check r1 r2 = |
||||
if (is_polarised r1 && is_polarised r2) then |
||||
(solve [(extends_varname (ray_to_term (inv_pol_ray r1)) "0"), (extends_varname ((ray_to_term r2)) "1")] []) |
||||
else None |
||||
|
||||
(* Create an index for a constellation *) |
||||
|
||||
let index_constellation const = |
||||
List.combine (List.init (List.length const) (fun a -> a)) const |
||||
|
||||
(* Make a list of links between two stars using their indexes*) |
||||
|
||||
let are_linked (i, il) (j, jl) = |
||||
List.fold_left (fun link_list ray -> |
||||
List.fold_left (fun rl rs -> |
||||
let uni = dual_check ray rs in |
||||
if Option.is_some uni then ((i,j),(ray,rs))::rl else rl |
||||
) [] jl ) [] il |
||||
|
||||
(* ======================================== |
||||
Constellation graph |
||||
======================================== *) |
||||
|
||||
(* Makes a dgraph from a constellation *) |
||||
let dgraph const = |
||||
let indexed_const = index_constellation const in |
||||
indexed_const >>= fun (i, il) -> |
||||
indexed_const >>= fun (j, jl) -> |
||||
guard (j >= i) (are_linked (i, il) (j, jl)) |
||||
|
||||
(* Convert a link to a string to be printable *) |
||||
|
||||
let link_to_string dg = |
||||
let rec aux dgl = |
||||
match dgl with |
||||
| [] -> "" |
||||
| ((i,j),(r1, r2))::[] -> ("(" ^ string_of_int i ^ ", " ^ string_of_int j ^ ")" ^ "," ^ "(" ^ term_to_string (ray_to_term r1) ^ ", " ^ term_to_string (ray_to_term r2) ^ ")") |
||||
| ((i,j),(r1, r2))::t -> ("(" ^ string_of_int i ^ ", " ^ string_of_int j ^ ")" ^ "," ^ "(" ^ term_to_string (ray_to_term r1) ^ ", " ^ term_to_string (ray_to_term r2) ^ ")") ^ "+" ^ (aux t) |
||||
in aux dg ;; |
||||
|
||||
(* Print a dgraph *) |
||||
|
||||
let print_dgraph dg = |
||||
let rec aux dgl = |
||||
match dgl with |
||||
| [] -> "" |
||||
| h::[] -> (link_to_string h) |
||||
| h::t -> (link_to_string h) ^ "\n" ^ aux t |
||||
in print_string (aux dg);; |
||||
|
||||
(* _________ Examples _________ *) |
||||
let y = Var("y") |
||||
let x = Var("x") |
||||
let z = Var("z") |
||||
let r = Var("r") |
||||
let zero = Func("0", Npol, []) |
||||
let s x = Func("s", Npol, [x]) |
||||
let add p x y z = Func("add", p, [x;y;z]) |
||||
|
||||
(* Convert int to term *) |
||||
let rec enat i = |
||||
if i = 0 then Func("0", Npol, []) else s (enat (i-1)) |
||||
|
||||
(* makes the constellation corresponding to an addition *) |
||||
let make_const_add n m = |
||||
[[add Pos zero y y]; [add Neg x y z; add Pos (s x) y (s z)]; [add Neg (enat n) (enat m) r; r]] |
||||
|
||||
let constellation = make_const_add 3 1 ;; |
||||
|
||||
print_dgraph (dgraph constellation) ;; |
Loading…
Reference in new issue