Résolution stellaire en OCaml
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

175 lines
5.6 KiB

open Unification
(* ========================================
Definitions
======================================== *)
type pol = Pos | Neg | Npol
type ray = Var of id | Func of (id * pol * ray list)
type star = ray list
type constellation = star list
type graph = (int * int) * (ray * ray) list
(* List monad *)
let return x = [x] (*plongement dans la monade de liste*)
let (>>=) xs k = List.flatten (List.map k xs)
let guard c x = if c then return x else []
(* ========================================
Useful functions
======================================== *)
(* Convert a pol and an id to a string, adding + or - before the id *)
let pol_to_string pol id =
if pol = Pos then "+" ^ id
else if pol = Neg then "-" ^ id
else id
(* Convert a ray (which is polarized) to a term *)
let rec ray_to_term r =
match r with
| Var id -> (Var(id) : term)
| Func(id, pol, raylist) -> (Func(pol_to_string pol id, List.map ray_to_term raylist) : term)
(* Invert polarization of a pol*)
let inv_pol pol =
if pol = Pos then Neg
else if pol = Neg then Pos
else pol
(* Invert the polarization of a ray to allow an easier Unification writing *)
let rec inv_pol_ray ray =
match ray with
| Func(id, pol, raylist) -> Func(id, inv_pol pol, List.map inv_pol_ray raylist)
| _ -> ray
(* Checks if a ray is polarised *)
let rec is_polarised r =
match r with
| Var id -> false
| Func(_, p, r) -> (p <> Npol) || (List.fold_left (fun acc b -> (is_polarised b) || acc) false r)
(* Checks if two rays are dual, meaning that after inverting polarization of one ray, the two rays can be unified *)
let dual_check r1 r2 =
if (is_polarised r1 && is_polarised r2) then
(solve [(extends_varname (ray_to_term (inv_pol_ray r1)) "0"), (extends_varname ((ray_to_term r2)) "1")] [])
else None
(* Create an index for a constellation *)
let index_constellation const =
List.combine (List.init (List.length const) (fun a -> a)) const
(* Make a list of links between two stars using their indexes*)
let are_linked (i, il) (j, jl) =
List.fold_left (fun link_list ray ->
List.fold_left (fun rl rs ->
let uni = dual_check ray rs in
if Option.is_some uni then ((i,j),(ray,rs))::rl else rl
) [] jl ) [] il
(* ========================================
Constellation graph
======================================== *)
(* Makes a dgraph from a constellation *)
let dgraph const =
let indexed_const = index_constellation const in
indexed_const >>= fun (i, il) ->
indexed_const >>= fun (j, jl) ->
guard (j >= i) (are_linked (i, il) (j, jl))
(* Convert a link to a string to be printable *)
let link_to_string dg =
let rec aux dgl =
match dgl with
| [] -> ""
| ((i,j),(r1, r2))::[] -> ("(" ^ string_of_int i ^ ", " ^ string_of_int j ^ ")" ^ "," ^ "(" ^ term_to_string (ray_to_term r1) ^ ", " ^ term_to_string (ray_to_term r2) ^ ")")
| ((i,j),(r1, r2))::t -> ("(" ^ string_of_int i ^ ", " ^ string_of_int j ^ ")" ^ "," ^ "(" ^ term_to_string (ray_to_term r1) ^ ", " ^ term_to_string (ray_to_term r2) ^ ")") ^ "+" ^ (aux t)
in aux dg ;;
(* Print a dgraph *)
let print_dgraph dg =
let rec aux dgl =
match dgl with
| [] -> ""
| h::[] -> (link_to_string h)
| h::t -> (link_to_string h) ^ "\n" ^ aux t
in print_string (aux dg);;
(* _________ Examples _________ *)
let make_const_pol pol c = Func (c, pol, [])
let make_const c = make_const_pol Npol c
let y = Var("y")
let x = Var("x")
let z = Var("z")
let r = Var("r")
let zero = make_const "0"
let s x = Func("s", Npol, [x])
let add p x y z = Func("add", p, [x;y;z])
(* Convert int to term *)
let rec enat i =
if i = 0 then zero else s (enat (i-1))
(* makes the constellation corresponding to an addition *)
let make_const_add n m =
[[add Pos zero y y]; [add Neg x y z; add Pos (s x) y (s z)]; [add Neg (enat n) (enat m) r; r]]
let constellation = make_const_add 1 3 ;;
print_dgraph (dgraph constellation) ;;
(* test constellation cyclique déterministe *)
(*let boucle = [[Func("c", Neg, [x]) ; Func("c", Pos, [x])]]
print_dgraph (dgraph boucle);; *)
(* exec graph *)
let exec graph const =
let rec aux graph sol =
match graph with
| [] -> Some sol
| h::tail ->
let rec aux2 glink sol =
match glink, sol with
| [], _ -> aux tail sol
| ((i,j),(ri, rj))::t,(Some sola, solb) ->
aux2 t (solve [(substit (ray_to_term ri) sola,substit (ray_to_term rj) sola)] sola, (List.filter (fun a -> a <> ri) (List.nth const i))@solb )
| (_,(None,_)) -> None
in aux2 h sol
in aux graph (Some [],[]) ;;
(* Exec where it just keeps the last equation and re-tries to solve it as a whole instead of applying the solution of the previous equation *)
let exec2 graph const =
let rec aux graph sol =
match graph with
| [] -> Some sol
| h::tail ->
let rec aux2 glink sol =
match glink, sol with
| [], _ -> aux tail sol
| ((i,j),(ri, rj))::t,(Some sola, solb) ->
aux2 t (let eq = ((ray_to_term ri),(ray_to_term rj))::sola in
if (solve eq []) = None then
failwith "marchpo"
else Some eq,
(List.filter (fun a -> a <> ri) (List.nth const i))@solb )
| (_,(None,_)) -> None
in aux2 h sol
in aux graph (Some [],[]) ;;
exec (dgraph constellation) constellation;;
exec2 (dgraph constellation) constellation;;