You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
261 lines
9.4 KiB
261 lines
9.4 KiB
open Unification |
|
|
|
(* ======================================== |
|
Definitions |
|
======================================== *) |
|
|
|
type pol = Pos | Neg | Npol |
|
type ray = Var of id | Func of (id * pol * ray list) |
|
(* alternative ray definition using terms *) |
|
(* type ray = PR of id * pol * ray | NR of term *) |
|
type star = ray list |
|
type constellation = star list |
|
type graph = (int * int) * (ray * ray) list |
|
|
|
(* List monad *) |
|
let return x = [x] (*plongement dans la monade de liste*) |
|
let (>>=) xs k = List.flatten (List.map k xs) |
|
let guard c x = if c then return x else [] |
|
|
|
(* ======================================== |
|
Useful functions |
|
======================================== *) |
|
|
|
(* Convert a pol and an id to a string, adding + or - before the id *) |
|
let pol_to_string pol id = |
|
if pol = Pos then "+" ^ id |
|
else if pol = Neg then "-" ^ id |
|
else id |
|
|
|
(* Convert a ray (which is polarized) to a term *) |
|
let rec ray_to_term r = |
|
match r with |
|
| Var id -> (Var(id) : term) |
|
| Func(id, pol, raylist) -> (Func(pol_to_string pol id, List.map ray_to_term raylist) : term) |
|
|
|
(* Invert polarization of a pol*) |
|
let inv_pol pol = |
|
if pol = Pos then Neg |
|
else if pol = Neg then Pos |
|
else pol |
|
|
|
(* Invert the polarization of a ray to allow an easier Unification writing *) |
|
let rec inv_pol_ray ray = |
|
match ray with |
|
| Func(id, pol, raylist) -> Func(id, inv_pol pol, List.map inv_pol_ray raylist) |
|
| _ -> ray |
|
|
|
(* Checks if a ray is polarised *) |
|
let rec is_polarised r = |
|
match r with |
|
| Var id -> false |
|
| Func(_, p, r) -> (p <> Npol) || (List.fold_left (fun acc b -> (is_polarised b) || acc) false r) |
|
|
|
(* Checks if two rays are dual, meaning that after inverting polarization of one ray, the two rays can be unified *) |
|
let dual_check r1 r2 = |
|
if (is_polarised r1 && is_polarised r2) then |
|
(solve [(extends_varname (ray_to_term (inv_pol_ray r1)) "0"), (extends_varname ((ray_to_term r2)) "1")] []) |
|
else None |
|
|
|
(* Create an index for a constellation *) |
|
let index_constellation const = |
|
List.combine (List.init (List.length const) (fun a -> a)) const |
|
|
|
(* apply_ray applies a substitution to a var of a ray*) |
|
let apply_ray id sub = |
|
let (_,s) = try List.find (fun (a,_) -> a = id ) sub with Not_found -> (id,Var(id)) in (s :ray) |
|
|
|
(* substit_ray applies all possible substition from an environment to a ray *) |
|
let rec substit_ray ray sub = |
|
match ray with |
|
| Var id -> apply_ray id sub |
|
| Func(f, p, tl) -> Func(f, p, List.map (fun a -> substit_ray a sub) tl) |
|
|
|
(* substit_star applies all possible substition from an environment to a star *) |
|
let substit_star star sub = |
|
List.map (fun a -> substit_ray a sub) star |
|
|
|
(* substit_const applies all possible substition from an environment to a constellation *) |
|
let substit_const const sub = |
|
List.map (fun a -> substit_star a sub) const |
|
|
|
(* extends_varname adds suffix to all var names of a ray *) |
|
let rec extends_varname_ray t ext = |
|
match t with |
|
| Var id -> Var(id ^ ext) |
|
| Func(f, p, tl) -> Func(f, p, List.map (fun a -> extends_varname_ray a ext) tl) |
|
|
|
(* extends_varname adds suffix to all var names of a star *) |
|
let extends_varname_star const ext = |
|
List.map (fun a -> extends_varname_ray a ext) const |
|
|
|
(* extends_varname adds suffix to all var names of a constellation based on each star number after being indexed *) |
|
let extends_varname_const const = |
|
List.map (fun (i,a) -> extends_varname_star a (string_of_int i)) (index_constellation const) |
|
|
|
(* convert a term to a ray *) |
|
let rec term_to_ray (term : term) = |
|
match term with |
|
| Var id -> (Var(id) : ray) |
|
| Func(f, r) -> Func(f, Npol, List.map (fun a -> term_to_ray a) r) |
|
|
|
(* ======================================== |
|
Constellation graph |
|
======================================== *) |
|
|
|
(* Makes a dgraph from a constellation *) |
|
let dgraph const = |
|
let indexed_const = index_constellation const in |
|
indexed_const >>= fun (i, il) -> |
|
indexed_const >>= fun (j, jl) -> |
|
il >>= fun r1 -> |
|
jl >>= fun r2 -> |
|
guard (j >= i) ( let uni = dual_check r1 r2 in |
|
if Option.is_some uni then [((i,j),(r1,r2))] |
|
else []) |
|
|
|
(* Convert a link to a string to be printable *) |
|
let link_to_string dg = |
|
let rec aux dgl = |
|
match dgl with |
|
| [] -> "" |
|
| ((i,j),(r1, r2))::[] -> ("(" ^ string_of_int i ^ ", " ^ string_of_int j ^ ")" ^ "," ^ "(" ^ term_to_string (ray_to_term r1) ^ ", " ^ term_to_string (ray_to_term r2) ^ ")") |
|
| ((i,j),(r1, r2))::t -> ("(" ^ string_of_int i ^ ", " ^ string_of_int j ^ ")" ^ "," ^ "(" ^ term_to_string (ray_to_term r1) ^ ", " ^ term_to_string (ray_to_term r2) ^ ")") ^ "+" ^ (aux t) |
|
in aux dg ;; |
|
|
|
(* Print a dgraph *) |
|
let print_dgraph dg = |
|
let rec aux dgl = |
|
match dgl with |
|
| [] -> "" |
|
| h::[] -> (link_to_string h) |
|
| h::t -> (link_to_string h) ^ "\n" ^ aux t |
|
in print_string (aux dg);; |
|
|
|
let clean_dgraph g = |
|
List.filter (fun a -> a <> []) g |
|
|
|
(* _________ Examples _________ *) |
|
let make_const_pol pol c = Func (c, pol, []) |
|
let make_const c = make_const_pol Npol c |
|
|
|
let y = Var("y") |
|
let x = Var("x") |
|
let z = Var("z") |
|
let r = Var("r") |
|
let zero = make_const "0" |
|
let s x = Func("s", Npol, [x]) |
|
let add p x y z = Func("add", p, [x;y;z]) |
|
|
|
(* Convert int to term *) |
|
let rec enat i = |
|
if i = 0 then zero else s (enat (i-1)) |
|
|
|
(* makes the constellation corresponding to an addition *) |
|
let make_const_add n m = |
|
[[add Pos zero y y]; [add Neg x y z; add Pos (s x) y (s z)]; [add Neg (enat n) (enat m) r; r]] |
|
|
|
let constellation = make_const_add 1 3 ;; |
|
|
|
print_dgraph (dgraph constellation) ;; |
|
|
|
(* former try |
|
let exec graph const = |
|
let rec aux graph sol = |
|
match graph with |
|
| [] -> Some sol |
|
| h::tail -> |
|
let rec aux2 glink sol = |
|
match glink, sol with |
|
| [], _ -> aux tail sol |
|
| ((i,j),(ri, rj))::t,(Some sola, solb) -> |
|
aux2 t (solve [(substit (ray_to_term ri) sola,substit (ray_to_term rj) sola)] sola, (List.filter (fun a -> a <> ri) (List.nth const i))@solb ) |
|
| (_,(None,_)) -> None |
|
in aux2 h sol |
|
in aux graph (Some [],[]) ;; |
|
|
|
former try |
|
let exec2 graph const = |
|
let rec aux graph sol = |
|
match graph with |
|
| [] -> Some sol |
|
| h::tail -> |
|
let rec aux2 glink sol = |
|
match glink, sol with |
|
| [], _ -> aux tail sol |
|
| ((i,j),(ri, rj))::t,(Some sola, solb) -> |
|
aux2 t (let eq = ((ray_to_term ri),(ray_to_term rj))::sola in |
|
if (solve eq []) = None then |
|
failwith "marchpo" |
|
else Some eq, |
|
(List.filter (fun a -> a <> ri) (List.nth const i))@solb ) |
|
| (_,(None,_)) -> None |
|
in aux2 h sol |
|
in aux graph (Some [],[]) ;; |
|
|
|
|
|
*) |
|
(* token is a couple of a family number and a star number in the constellation *) |
|
type token = int * int |
|
type process = token list |
|
|
|
(* get a star using its number in the list from a constellation *) |
|
let get_star const i = |
|
List.nth const i |
|
|
|
(* Takes a constellation, a ray and a (ray,ray) list and extracts rays from stars number i (respectively j) that are not ri (respectively rj) when ri (respectively rj) isn't in the prob list *) |
|
let star_filter const ((i, j),(ri,rj)) prob = |
|
let (prob_a, prob_b) = List.split prob in |
|
(if List.mem ri prob_a then [] |
|
else (List.filter (fun a -> a <> ri) (get_star const i)) |
|
)@( |
|
if List.mem rj prob_b then [] |
|
else (List.filter (fun a -> a <> rj) (get_star const j)) |
|
) |
|
|
|
(* TODO faire un filtre post application, const_filter*) |
|
|
|
(* convert the (ray,ray) list part of a link to an equation, converting its rays to terms *) |
|
let link_to_eq prob = |
|
List.map (fun (ra, rb) -> (ray_to_term (inv_pol_ray ra)), ray_to_term rb) prob |
|
|
|
(* takes a token, a graph and a constellation and returns the list of tokens to check next and a list of solvable equation *) |
|
let divide_token (fam, n_star) graph const = |
|
let rec aux g toklist prob fstar = |
|
match g with |
|
| [] -> Some (toklist,prob,fstar) |
|
| h::t -> let links = List.filter (fun ((i, _),(_, _)) -> i = n_star) h in |
|
let rec aux2 l tokl prob2 star2 = |
|
match l with |
|
| [] -> Some (toklist,prob2,star2) |
|
| ((i, j),(ri,rj))::tl -> |
|
if Option.is_some (solve (link_to_eq (( ri, rj)::prob2)) []) then |
|
aux2 tl ((fam, j)::tokl) ((ri, rj)::prob2) ( ( star_filter const ((i, j),(ri,rj)) prob2 )@star2 ) |
|
else None |
|
in if links = [] then aux t toklist prob fstar else aux2 links toklist prob fstar |
|
in aux graph [] [] [] |
|
|
|
(* should be deterministic exec, graph shouldn't be empty *) |
|
let exec const = |
|
let const_ext = extends_varname_const const in |
|
let graph = clean_dgraph (dgraph const_ext) in |
|
let rec aux (toklist,prob,star) = |
|
begin match toklist with |
|
| [] -> star,prob |
|
| h::t -> aux (Option.get (divide_token h graph const_ext)) |
|
end |
|
in let ((i,_),(_,_)) = (List.hd (List.hd graph)) in let (starf, probf) = aux ([(0,i)],[],[]) in substit_star starf (List.map (fun (i,b) -> (i,term_to_ray b)) (Option.get (solve (link_to_eq probf) []))) |
|
|
|
(* test constellation cyclique déterministe *) |
|
let test = [ [Func("c", Neg, [x]); x] ; [Func("c", Pos, [Func("f", Npol, [y])]) ; Func("c", Npol, [x]) ] ] ;; |
|
print_dgraph (dgraph test);; |
|
exec test ;; |
|
|
|
(* TODO : |
|
faire un filtre post application, const_filter |
|
corriger la substitution qui ne fonctionne pas dans exec |
|
*) |
|
|
|
(* prob : |
|
|
|
let fgraph = List.flatten graph in *) |