You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
6.1 KiB
168 lines
6.1 KiB
(*Terme du Lambda-Calcul*) |
|
type term = |
|
| Var of string |
|
| Lambda of string * term |
|
| App of term * term |
|
|
|
|
|
let to_var x = Var x |
|
|
|
let rec to_lambda l t = |
|
match l with |
|
| h::tail -> Lambda (h, to_lambda tail t) |
|
| [] -> t |
|
|
|
let to_app t u = App (t, u) |
|
|
|
(*Applique une substitution de x par sub à un terme t*) |
|
let rec apply x sub = function |
|
| Var (y) -> if y = x then sub else Var (y) |
|
| Lambda (y,t) -> Lambda (y, apply x sub t) |
|
| App (t1, t2) -> App (apply x sub t1, apply x sub t2) |
|
|
|
(*Applique une liste de substition à un terme*) |
|
let rec subst t sub_list = |
|
List.fold_left (fun t (x, sub) -> apply x sub t) t sub_list |
|
|
|
(* Applique la beta réduction, qui transforme (lambda x. t)u en t[x:=u] *) |
|
let rec beta = function |
|
| App (Lambda (x, t), u) -> subst t [(x, u)] |
|
| _ -> failwith "This term is not a redex" |
|
|
|
(* return i where i is the smallest suffix needed so that "x ^ i" isn't in l *) |
|
let rec var_counter i x l = |
|
if List.mem (x ^ (string_of_int i)) l then var_counter (i+1) x l |
|
else i |
|
|
|
(* Alpha Conversion : renames lambda variables duplicates by adding a number to them*) |
|
let alpha_conv t = |
|
let rec aux l = function |
|
| Var x when List.mem x l -> |
|
let i = string_of_int ( (var_counter 0 x l) - 1) in |
|
if i = "-1" then Var x |
|
else Var (x^i) |
|
| Var x -> Var x |
|
| Lambda(x, t) when List.mem x l -> |
|
let i = string_of_int (var_counter 0 x l) in |
|
Lambda (x^i, aux ((x^i)::l) t) |
|
| Lambda(x, t) -> Lambda (x, aux (x::l) t) |
|
| App (t, u) -> App (aux l t, aux l u) |
|
in aux [] t |
|
(* --------------------------------------- |
|
Exemples |
|
--------------------------------------- *) |
|
|
|
let x = Var "x";; |
|
let y = Var "y";; |
|
let a = Var "a" ;; |
|
let b = Var "b" ;; |
|
let i = Lambda ("x", x);; |
|
|
|
(*(λx. x x) a — duplication*) |
|
let n1 = App (Lambda ("x", App (x, x)), a);; |
|
(*(λx. x x) (λa. a) — passage de fonction / ordre supérieur*) |
|
let n2 = App (Lambda ("x", App (x, x)), Lambda (("a"), a));; |
|
(*(λx. x (λx.x)) y — variable libres/liées*) |
|
let n3 = App (Lambda ("x", App (x, Lambda ("x", x) ) ), y) ;; |
|
(*(λx. x (λy. x y)) y — capture de variable*) |
|
let n4 = App (Lambda ("x", App(x, Lambda ("y", App (x, y)))), y);; |
|
(*(λxy. x) a b — fonction à deux entrées et effacement*) |
|
let n5 = App ( App ( Lambda ("x", ( Lambda ("y", x))), a), b);; |
|
(*(λxy. x) a — application partielle pour deux entrées*) |
|
let n6 = App ( Lambda ("x", ( Lambda ("y", x))), a);; |
|
(*(λxy. x) I a b — sur application pour deux entrées*) |
|
let n7 = App (App ( App (Lambda ("x", ( Lambda ("y", x))), i), a), b);; |
|
(*(λx. x x) (I I) — duplication inutile dans une stratégie*) |
|
let n8 = App ( Lambda ("x", App (x, x)), App ( i, i));; |
|
(*(λxy. y) (I I) I — différence de complexité selon la stratégie*) |
|
let n9 = App ( App (Lambda ("x", ( Lambda ("y", y))), App (i, i)), i);; |
|
|
|
(* --------------------------------------- |
|
Display |
|
--------------------------------------- *) |
|
|
|
let rec string_of_list printer sep = function |
|
| [] -> "" |
|
| [x] -> printer x |
|
| h::t -> |
|
(printer h) ^ sep ^ (string_of_list printer sep t) |
|
|
|
|
|
let rec string_of_term = function |
|
| Var x -> x |
|
| Lambda (x, Lambda (y, t)) -> "λ" ^ x ^ y ^ ". " ^ string_of_term t ^ "" |
|
| Lambda (x, t) -> "λ" ^ x ^ ". " ^ string_of_term t ^ "" |
|
| App (Var x, Var y) -> x ^ " " ^ y |
|
| App (t, Var x) -> "(" ^ string_of_term t ^ ") " ^ x |
|
| App ( App ( t, u), v) -> "(" ^ string_of_term (App (t, u)) ^ ") " ^ string_of_term v |
|
| App ( u, App ( t, v)) -> string_of_term u ^ " (" ^ string_of_term (App (t, v)) ^ ")" |
|
| App ( Lambda (x, App (t, y)), v) -> "(" ^ string_of_term (Lambda (x, App (t, y))) ^ ") " ^ string_of_term v |
|
| App ( Lambda (x, t), u) -> string_of_term (Lambda (x,t)) ^ " (" ^ string_of_term u ^")" |
|
| App (t, u) -> string_of_term t ^ " (" ^ string_of_term u ^ ")" |
|
|
|
|
|
(* --------------------------------------- |
|
Réduction |
|
--------------------------------------- *) |
|
|
|
exception Irreductible |
|
(* Vérifie si un terme est une valeur, c'est à dire qu'on ne peut plus le réduire *) |
|
let is_value = function |
|
| Lambda (_, _) -> true |
|
| Var _ -> true |
|
| _ -> false |
|
|
|
(* Vérifie si un lambda est linéaire, i.e. qu'il n'y a qu'une seule occurence de son paramètre *) |
|
|
|
let rec count_freevars x = function |
|
| Lambda (y, t) -> count_freevars x t |
|
| App (t, u) -> (count_freevars x t) + (count_freevars x u) |
|
| Var y -> if x = y then 1 else 0 |
|
|
|
let rec is_linear = function |
|
| Lambda (x, t) -> (count_freevars x t) = 1 && is_linear t |
|
| App(t, u) -> is_linear t && is_linear u |
|
| Var x -> true |
|
|
|
(* Réduit d'un pas les termes par l |
|
'extérieur puis l'intérieur *) |
|
let rec lo_reduction = function |
|
| App ( Lambda (x, t), u) as redex -> (beta redex) |
|
| App (Var x, (_ as t)) -> App (Var x, lo_reduction t) |
|
| App (App (_,_) as t, Var x) -> App (lo_reduction t, Var x) |
|
| App (App (_,_) as t, (_ as u)) -> App (lo_reduction t, u) |
|
(*| App (t, u) -> (App (lo_reduction t, lo_reduction u))*) |
|
| Lambda (x, t) -> Lambda (x, lo_reduction t) |
|
| _ -> raise Irreductible |
|
|
|
(* Boucle sur la lo_reduction pour appliquer cette stratégie de réduction jusqu'à la fin *) |
|
let rec lo_eval t = |
|
try let t' = lo_reduction t in |
|
lo_eval t' with Irreductible -> t |
|
|
|
(* Réduit d'un pas les termes en commençant par l'argument puis réduit les fonctions *) |
|
let rec cbv = function |
|
| App ( Lambda (x, t), v) as redex when is_value v -> (*cbv*) (beta redex) |
|
| App (t, u) when is_value u -> (App (cbv t, u)) |
|
| App (t, u) -> (App (t, cbv u)) |
|
| Lambda (x, t) -> raise Irreductible |
|
| Var x -> raise Irreductible |
|
|
|
(* Boucle sur call_by_value pour appliquer cette stratégie de réduction jusqu'à la fin *) |
|
let rec cbv_eval t = |
|
try let t' = cbv t in |
|
cbv_eval t' with Irreductible -> t |
|
|
|
(* Réduit d'un pas les termes en commençant par la fonction puis passe à l'argument*) |
|
let rec cbn = function |
|
| App ( Lambda (x, t), v) as redex -> beta redex |
|
| App (t, u) -> (App (cbn t, u)) |
|
| Lambda (x, t) -> raise Irreductible |
|
| Var x -> raise Irreductible |
|
|
|
(* Boucle sur call_by_name pour appliquer cette stratégie de réduction jusqu'à la fin *) |
|
let rec cbn_eval t = |
|
try let t' = cbv t in |
|
cbn_eval t' with Irreductible -> t |
|
|
|
|
|
|